17,580 research outputs found

    Pervasive liquid metal direct writing electronics with roller-ball pen

    Full text link
    A roller-ball pen enabled direct writing electronics via room temperature liquid metal ink was proposed. With the rolling to print mechanism, the metallic inks were smoothly written on flexible polymer substrate to form conductive tracks and electronic devices. The contact angle analyzer and scanning electron microscope were implemented to probe the inner property of the obtained electronics. An ever high writing resolution with line width and thickness as 200{\mu}m and 80{\mu}m, respectively was realized. Further, with the administration of external writing pressure, GaIn24.5 droplets embody increasing wettability on polymer which demonstrates the pervasive adaptability of the roller-ball pen electronics

    Sampling Artifact in Volume Weighted Velocity Measurement.--- II. Detection in simulations and comparison with theoretical modelling

    Full text link
    Measuring the volume weighted velocity power spectrum suffers from a severe systematic error, due to imperfect sampling of the velocity field from inhomogeneous distribution of dark matter particles/halos in simulations or galaxies with velocity measurement. This "sampling artifact" depends on both the mean particle number density nˉP\bar{n}_P and the intrinsic large scale structure (LSS) fluctuation in the particle distribution. (1) We report robust detection of this sampling artifact in N-body simulations. It causes ∼12\sim 12% underestimation of the velocity power spectrum at k=0.1k=0.1h/Mpc for samples with nˉP=6×10−3\bar{n}_P=6\times10^{-3} (Mpc/h)−3^{-3}. This systematic underestimation increases with decreasing nˉP\bar{n}_P and increasing kk. Its dependence on the intrinsic LSS fluctuations is also robustly detected. (2) All these findings are expected by our theoretical modelling in paper I \cite{Zhang14}. In particular, the leading order theoretical approximation agrees quantitatively well with simulation result for nˉP≳6×10−4\bar{n}_P\gtrsim6\times 10^{-4}(Mpc/h)−3^{-3}. Furthermore, we provide an ansatz to take high order terms into account. It improves the model accuracy to ≲1\lesssim1% at k≲0.1k\lesssim0.1h/Mpc over 3 orders of magnitude in nˉP\bar{n}_P and over typical LSS clustering from z=0z=0 to z=2z=2. (3) The sampling artifact is determined by the deflection D{\bf D} field, which is straightforwardly available in both simulations and data of galaxy velocity. Hence the sampling artifact in the velocity power spectrum measurement can be self-calibrated within our framework. By applying such self-calibration in simulations, it becomes promising to determine the {\it real} large scale velocity bias of 1013M⊙10^{13}M_\odot halos with ∼1\sim 1% accuracy, and that of lower mass halos by better accuracy. ...[abridged]Comment: 11 pages, 11 figures. More arguments added, match the PRD accepted versio

    Determine the galaxy bias factors on large scales using bispectrum method

    Full text link
    We study whether the bias factors of galaxies can be unbiasedly recovered from their power spectra and bispectra. We use a set of numerical N-body simulations and construct large mock galaxy catalogs based upon the semi-analytical model of Croton et al. (2006). We measure the reduced bispectra for galaxies of different luminosity, and determine the linear and first nonlinear bias factors from their bispectra. We find that on large scales down to that of the wavenumber k=0.1h/Mpc, the bias factors b1 and b2 are nearly constant, and b1 obtained with the bispectrum method agrees very well with the expected value. The nonlinear bias factor b2 is negative, except for the most luminous galaxies with M<-23 which have a positive b2. The behavior of b2 of galaxies is consistent with the b2 mass dependence of their host halos. We show that it is essential to have an accurate estimation of the dark matter bispectrum in order to have an unbiased measurement of b1 and b2. We also test the analytical approach of incorporating halo occupation distribution to model the galaxy power spectrum and bispectrum. The halo model predictions do not fit the simulation results well on the precision requirement of current cosmological studies.Comment: 9 pages, 8 figures, accepted for publication in Ap

    The anti-sepsis activity of the components of Huanglian Jiedu Decoction with high lipid A-binding affinity

    Get PDF
    Huanglian Jiedu Decoction (HJD), one of the classic recipes for relieving toxicity and fever, is a common method for treating sepsis in China. However, the effective components of HJD have not yet been identified. This experiment was carried out to elucidate the effective components of HJD against sepsis. Thus, seven fractions from HJD were tested using a biosensor to test their affinity for lipid A. The components obtained that had high lipid A-binding fractions were further separated, and their affinities to lipid A were assessed with the aid of a biosensor. The levels of LPS in the blood were measured, and pathology experiments were conducted. The LPS levels and mRNA expression analysis of TNF-α and IL-6 of the cell supernatant and animal tissue were evaluated to investigate the molecular mechanisms. Palmatine showed the highest affinity to lipid A and was evaluated by in vitro and in vivo experiments. The results of the in vitro and in vivo experiments indicated that the levels of LPS, TNF-α and IL-6 of the palmatine group were significantly lower than those of the sepsis model group (p \u3c 0.01). The group treated with palmatine showed strong neutralizing LPS activity in vivo. The palmatine group exhibited stronger protective activity on vital organs compared to the LPS-induced animal model. This verifies that HJD is a viable treatment option for sepsis given that there are multiple components in HJD that neutralize LPS, decrease the release of IL-6 and TNF-α induced by LPS, and protect vital organs
    • …
    corecore